文章题目:ARadiomicsApproachtoAssessTumour-InfiltratingCD8CellsandResponsetoanti-PD-1oranti-PD-L1Immunotherapy:AnImagingBiomarker,RetrospectiveMulticohortStudy
研究人员:RogerSun,etal.
研究单位:GustaveRoussy-CentraleSupélec-TherapanaceaCentreofArtificialIntelligenceinRadiationTherapyandOncology,GustaveRoussyCancerCampus,Villejuif,France;RadiomicsTeam,MolecularRadiotherapyINSERMU,Paris-SudUniversity,GustaveRoussyCancerCampus,andUniversityofParis-Saclay,Villejuif,France;DepartmentofRadiationOncology,GustaveRoussyCancerCampus,Villejuif,France.
发表时间:.09
期刊名称:LancetOncol
影响因子:33.(Q1)
01
核心亮点1.Thisstudyisthefrsttodevelopandvalidatearadiomics-basedbiomarkeroftumour-infltratingCD8cellstoshowacorrelationofthenumberoftumour-infltratinglymphocytes(asestimatedbyapathologist),tumourimmunephenotypes,andclinicalresponsestoanti-programmedcelldeathprotein-1oranti-programmedcelldeathligand1immunotherapyinthreeindependentcohortsofpatientswithadvancedsolidtumours(这项研究是首次开发和验证基于肿瘤CD8细胞的放射性标记生物标志物,在三个独立的实体瘤患者队列中验证显示出与肿瘤浸润淋巴细胞的数量(由病理学家估计)、肿瘤免疫表型以及对程序性细胞死亡蛋白-1或抗程序性细胞死亡配体1免疫治疗的临床反应之间的相关性)。
2.Thisstudysuggeststhatthereispotentialfornon-invasivebiomarkerdevelopmentinimmunotherapy(这项研究表明免疫疗法中非侵入性生物标志物的发展潜力)。
02
思路与方法本研究基于RNA-Seq数据区分出CD8细胞的表达,再将CD8细胞的表达特征对比到影像学数据中,利用深度学习筛选出能预测CD8细胞表达的影响学特征。这些预测因子在3个外部验证集中独立验证。
0301
摘要Background:Becauseresponsesofpatientswithcancertoimmunotherapycanvaryinsuccess,innovativepredictorsofresponsetotreatmentareurgentlyneededtoimprovetreatmentout
转载请注明:http://www.xiebinbinb.com/blcwegs/5450.html